If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+20p+20=0
a = 5; b = 20; c = +20;
Δ = b2-4ac
Δ = 202-4·5·20
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$p=\frac{-b}{2a}=\frac{-20}{10}=-2$
| 36^2x-5=1/6 | | 6h-8=10 | | y=-20-4 | | 2z+3z+45=180 | | 6=-n+3 | | 3a-12=2a+4 | | 4x-8=3x+(-4) | | 11-1x=15 | | `6x+5=5x+10` | | 5/7=u/4 | | -4(1+x)=-6+2 | | x+x*2-250=2,858 | | -5x-190=-115 | | x/2+x/6=9 | | c-6=23 | | 4/9n+7=15 | | y=2(3)^2 | | ⅓(6x-12)=-20 | | 55=2u+17 | | 4x+8x-5=3(4x+3) | | 4x+20=3x+7=90 | | 2x+10=103 | | 3(2x+1)=4x-3 | | 19p+32+72=180 | | 1/3r+1=2/3r-2 | | x+x.2-250=2,858 | | 3*t2=14 | | -85=5(1-6b | | 9(x-4)-1=80 | | 4/3w-3=-1/2w-2/3 | | 1/2w+7=3 | | D/5=3;d= |